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Abstract- In this survey, we highlight and enlist vivid results related mainly to the product of three graph 

structures, namely graphs, signed graphs and gain graphs and garner facts relating to the spectra of their 

adjacency and Laplacian matrices. Cartesian product, lexicographic product, NEPS (Non-extendable p sums) are 
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of skew-gain graphs, which encompass and generalize the above structures, comes as concluding remarks. 
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1. INTRODUCTION 

We survey various graph products and explore the 

results relating to their spectra with respect to the 

corresponding to the adjacency and Laplacian (or 

Kirchhoff)matrices. All graphs in this article are 

simple and finite. We assume that the readers are 

aware of basic results in graph theory, the details of 

which can be had from [19] or any other well known 

resources. Signed graphs (also called sigraphs), with 

positive or negative labels on the edges, are much 

studied in the literature because of their use in 

modeling a variety of physical and socio-

psychological processes (see [3] and [1, 14]) and also 

because of their interesting connections with many 

classical mathematical systems (see [29]). Formally, a 

signed graph is an ordered pair Σ = (G,σ) where G = 

(V,E) is a graph called the underlying graph of Σ and 

σ : E →{+1,−1}, called a signing (also called a 

signature), is a function from the edge set E of G into 

the set {+1,−1} of signs. The sign of a cycle in a 

signed graph is the product of the signs of its edges. 

Thus a cycle is positive if and only if it contains even 

number of negative edges. A signed graph Σ is said to 

be balanced (or cycle balanced) if all of its cycles are 

positive. 

 A signed graph is all-positive (respectively, all-

negative) if all of its edges are positive (negative); 

further, it is said to be homogeneous if it is either all-

positive or all negative. A graph can be considered to 

be a homogeneous signed graph; thus signed graphs 

becomea generalization of graphs.  The notion of 

signed graphs is further generalized to gain graphs as 

follows. A gain graph is a graph where the edges are 

given some orientation and labelled with the elements 

(called gains) from a group so that the gains are 

inverted when we reverse the direction of the edges. 

Throughout this paper, F ×, where F is a field of 

characteristic zero, denotes the multiplicative group of 

non-zero elements in F. The notation Φ = (G,F ×,ϕ) 

denotes a gain graph Φ with underlying graph G, 

underlying group F × and the gain function ϕ. For 

definition and other details for gain graphs, one may 

refer to [29]. 

The Cartesian product Σ1 × Σ2 of two signed graphs Σ1 

= (V1,E1,σ1) and Σ2 = (V2,E2,σ2) is a generalization of 

the Cartesian product of ordinary graphs (see [6, 

Section 2.5]). It is defined as the signed graph (V1 × 

V2, E, σ) where the edge set E is that of the Cartesian 

product of underlying unsigned graphs and the 

signature function σ for the labeling of the edges is 

defined by 

 ((     ) (     ))  {
  (     )        

  (     )        
 

   

The adjacency matrix and the Laplacian matrix of a 

signed graph are immediate generalizations of familiar 

matrices from ordinary, unsigned graph theory ([6]). 

Thus, if Σ = (G, σ) is a signed graph where G = (V, E) 

with V = {v1, v2, ..., vn}, its adjacency matrix A(Σ) = 

(aij)n×n is defined as 

    {
 (     )          

           
           

 

 

The Laplacian matrix (or Kirchhoff matrix or 

admittance matrix) of a signed graph Σ, denoted by 

L(Σ) (or K(Σ)), is D(Σ) − A(Σ) where D(Σ) is the 

diagonal matrix of the degrees of vertices of Σ. 

The ordinary adjacency and Laplacian matrices of a 

graph G are identical with those of the all-positive 

signed graph +G. The so-called signless Laplacian of 

G ([7]) is the Laplacian matrix of the all-negative 

graph −G. Eigenvalues of the adjacency matrix, the 

Laplacian matrix and the signless Laplacian matrix of 

a graph have been widely used to characterize 

properties of a graph and extract some useful 

information from its structure. The eigenvalues of the 

adjacency matrix of a graph are often referred to as the 

eigenvalues of the graph and those of the Laplacian 

matrix as the Laplacian eigenvalues.   file including 

postscript files for figures. 
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2. NOTION OF BALANCE AND BALANCED 

COMPONENTS 

For a signed graph Σ, the quantity c(Σ) = c(G) is the 

number of connected components of the underlying 

graph and cb(G) is the number of its components that 

are bipartite. The quantity b(Σ) is the number of 

connected components of Σ that are balanced. An 

essential lemma in signed graph theory is a 

characterization of balance by switching, which when 

expressed in terms of the adjacency matrix takes the 

following form: 

Lemma 2.1 ([27]). Σ is balanced if and only if there is 

a diagonal matrix S with diagonal elements ±1 such 

that SA(Σ)S is non-negative. Then SA(Σ)S = A(G) 

where G is the underlying graph of  Σ 

 

The negation of a signed graph Σ = (G,σ), denoted by 

−Σ = (G,−σ), is the same graph with all signs reversed. 

The adjacency matrices are related by A(−Σ) = −A(Σ). 

The adjacency matrix A(Φ) = (aij) of a gain graph      

Φ = (G, F 
×
, ϕ), is defined as 

 

    {
 (     )        ⃗⃗ ⃗⃗ ⃗    

           
 

 

and aji =  φ(vi, vj)
−1

 where 0F    is the additive identity 

in the field. If there is no scope for confusion we drop 

the subscript F and write the additive identity in F 

simply as 0 and the multiplicative identity of F as 1.  

Also, whenever we deal with the matrix representation 

of a gain graph, we take the underlying group to be F 

× and on all other occasions the same to be a general 

group Γ, or an abelian group, if the situation demands 

so. The characteristic polynomial of Φ, denoted by 

Ψ(Φ,x) or simply as Ψ(Φ), is defined as the 

characteristic polynomial det(xI −A(Φ))   F[x] of 

A(Φ), where I is the identity matrix of order as that of 

A(Φ). The zeros of Ψ(Φ,x) , in F or in its splitting 

field, are called eigenvalues of Φ. For more details on 

matrices with entries from a field, their determinants, 

eigenvalues and eigenvectors, the reader may refer to 

[22].  

A signed graph can be taken as a gain graph with the 

underlying group as a gain graph over the 

multiplicative subgroup {1,−1}  of any field F. A 

graph can be regarded as a gain graph with the 

underlying group as {1}. The gain  (C), of a cycle C : 

v0v1 ...vnv0, is the product  (v0v1) (v1v2)... (vnv0) of 

gains of its edges. The balance notion defined above in 

the case of signed graphs are extended naturally to 

gain graphs. Recall that the spectrum of a graph or 

signed graph is the spectrum of its adjacency matrix 

and that the spectrum is the list of eigenvalues with 

their multiplicities. The Laplacian spectrum is the 

spectrum of the Laplacian matrix. Acharya’s theorem, 

following, gives a spectral criterion for balance in 

signed graphs. 

 

Theorem 2.2 ([14]). If Σ = (G, σ) is a signed graph, 

then Σ is balanced if and only if G and Σ have the 

same spectrum. 

The following theorem, found in [11], is a significant 

extension of the above theorem for signed graphs to 

gain graphs. 

Theorem 2.3 ([11]). If Φ = (G,F
×
, φ) is a gain graph 

where G = (V, E), then Φ is balanced if, and only if, 

Ψ(Φ, x) = Ψ(G, x). 

 2.1 Cartesian Product of two gain graphs  

Now we enlist results for the cartesian product of two 

gain graphs and a characterization theorem for balance 

when the group for assigning the edge gain is abelian. 

Given two gain graphs Φ1 = (V1, E1, Γ,  1)  and         

Φ2 = (V2, E2, Γ,  2), their cartesian product Φ1 × Φ2 is 

defined as the gain graph (V1 × V2, E, Γ, ) where the 

edge set E is that of the cartesian product of 

underlying graphs and the gain function φ for the 

labeling of the edges is defined by 

 

 ((     ) (     ))  {
  (     )                

  (     )                
 

 

 

Now we need an important notion called switching of 

gain graphs (For more details see [29]). If ζ : V → Γ is 

a function called switching function, then switching of 

the gain graph Φ = (G,Γ, ) by ζ means changing   to 

 ζ defined by: 

                 ζ
(uv) = ζ(u) (uv)(ζ(v))

−1
. 

 

The switched graph, denoted by Φ
ζ
, is the gain graph 

Φ
ζ 
= (G,Γ, φ

 ζ
). We call two gain graphs Φ1 = (G,Γ, φ1) 

and Φ2 = (G,Γ, φ2) to be switching equivalent, if there 

exists a switching function ζ : V → Γ such that           

Φ1 = Φ2. It can be seen that switching preserves many 

features of the two gain graphs including their 

eigenvalues[29]. Indeed, the following is a very 

important result. 

Lemma 2.4 ([27]). A gain graph is balanced if, and 

only if, it can be switched to an all-identity gain graph. 

   

Theorem 2.5. ([9])  If Φ1 = (V1, E1, Γ, φ1) and              

Φ2 = (V2, E2, Γ, φ2) are two gain graphs where Γ is 

abelian, then their cartesian product Φ1 × Φ2, is 

balanced if, and only if, Φ1 and Φ2 are both balanced. 

 

The condition that Γ must be abelian cannot be 

relaxed, since in the case of the two gain paths ΦP2 = 

(P2, Γ, φ1) and Φ’P2 = (P2, Γ, φ2) where Γ is any non-

abelian group and if α and β are any two non-

commuting elements of Γ such that φ1(u1u2) = α and 

φ2(v1v2) = β, then ΦP2 x Φ’P2 is unbalanced even 

though the constituent gain paths are balanced. 

Balance in the case of the cartesian product of several 

gain graphs can be discussed in a similar way, which 

we do in Section 3.3.  
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2.1.  Lexicographic Product Of Two Gain 

Graphs  

If G1 = (V1, E1) and G2 = (V2, E2) are two graphs, their 

lexicographic product G1[G2] is defined as the graph 

with the vertex set V1×V2 and the vertices u = (ui, vj) 

and v = (uk, vl) are adjacent whenever ui is adjacent to 

uk or when ui = uk and vj is adjacent to vl. We shall 

extend this definition to gain graphs. We define the 

lexicographic product Φ1[Φ2] (also called 

composition) of two gain graphs Φ1 = (V1,E1,Γ,ϕ1) and 

Φ2 = (V2, E2, Γ, φ2) as the gain graph (V1×V2, E, Γ, φ) 

where the edge set E is that of the lexicographic 

product of underlying graphs and the edge gain 

assigning function   is defined byIf G1 = (V1, E1) and 

G2 = (V2, E2) are two graphs, their lexicographic 

product G1[G2] is defined as the graph with the vertex 

set V1×V2 and the vertices u = (ui,vj) and v = (uk,vl) are 

adjacent whenever ui is adjacent to uk or when ui = uk 

and vj is adjacent to vl. We shall extend this definition 

to gain graphs. We define the lexicographic product 

Φ1[Φ2] (also called composition) of two gain graphs 

Φ1 = (V1, E1, Γ, φ1) and Φ2 = (V2, E2, Γ, φ2) as the gain 

graph (V1 ×V2, E, Γ, φ) where the edge set E is that of 

the lexicographic product of underlying graphs and the 

edge gain assigning function φ is defined by 

 ((     ) (     ))  {
  (     )                

  (     )                
 

 

Theorem 2.6.([11]) If Φ1 and Φ2 are two gain graphs 

over the same abelian group Γ, then their 

lexicographic product or composition Φ1[Φ2] is 

balanced if, and only if, Φ1 is balanced and Φ2 is an 

all-identity gain graph. 

 

3. SPECTRA OF PRODUCT OF GRAPHS 

In this section we deal with spectra of product of 

graphs for which we require some introductory 

remarks. The incidence matrix of a signed graph Σ 

with n vertices and m edges ([27]) is the n×m matrix 

H(Σ) =  in which ηik = 0 if vi is not incident with 

ek, and ηik = ±1 if vi is incident with ek, and such that 

for an edge vivj, the product ηikηjk = −σ(vivj). The 

incidence matrix is uniquely determined only up to 

multiplication of columns by −1, but that ambiguity 

does not affect any of the properties of interest to us. 

In particular, the incidence matrix always satisfies the 

Kirchhoff equation H(Σ)H(Σ)
T 

= L(Σ). For that reason 

the Laplacian matrix is positive semi-definite.  

Lemma 3.1 ([9]). The incidence matrix and the 

Laplacian matrix of a signed graph Σ both have rank n 

− b(Σ). 

For a graph G, the Laplacian L(G) = L(+G) has rank 

n−c(G) and the signless Laplacian Q(G) = L(−G) has 

rank n − cb(G). 

We take note of the special case in which the 

underlying graph G is regular. The following lemma 

generalizes the well known fact that, for a k-regular 

graph, the smallest eigenvalue is −k occurring with 

multiplicity cb(G), the largest eigenvalue is k with 

multiplicity c(G) and the other eigenvalues fall into 

the open interval (−k, k). 

Lemma 3.2. ([9])Assume Σ has underlying graph G 

which is regular of degree k. Let the eigenvalues of Σ 

be λ1,λ2,...,λn in weakly increasing order. Then 

λ1,...,λb(−Σ) = −k, −k < λb(−Σ)+1,...,λn−b(Σ) < k and 

λn−b(Σ)+1,...,λn = k. 

The Laplacian eigenvalues of Σ are λ
L

i = k - λi , 

including 2k with multiplicity and 0 with multiplicity 

b(Σ). The Laplacian energy equals the energy. 

 

Lemma 3.2 raises the question of whether it is possible 

to have b(−Σ) > n − b(Σ) , since if that is the case and 

k 6= 0, then there is a contradiction in the notation of 

the lemma. By Lemma 3.4, a contradiction of that kind 

in Lemma 3.2 is not a problem because                 

b(−Σ) > n − b(Σ) implies k = 0 and then all 

eigenvalues are 0 = k = −k. 

Lemma 3.3. ([9]) Both Σ and −Σ are balanced if and 

only if the underlying graph G is bipartite and Σ or −Σ 

is balanced. 

Lemma 3.4.([9]) b(−Σ) + b(Σ) ≤ n except possibly 

when the number of isolated vertices is greater than 

the number of components with order at least 3. 

In particular, if the underlying graph G is k-regular 

and b(−Σ) + b(Σ) > n then k = 0. 

  

3.1.  Kronecker Product Of Matrices And Their 

Applications  

The identity matrix of order n is denoted by In. The 

Kronecker product of matrices A = [aij]m x p and B of 

orders m × p and n × q, respectively, is the matrix       

A   B of order mn × pq defined by 

                                         

                                 

                                          

 

The Kronecker product is a componentwise operation, 

that is, (A   B)(A’  B’) = (AA’)   (BB’). It is also 

an associative operation; therefore a multiple product 

A1   A2  ···  Aν is well defined. Let Ai have order  

mi × ni and elements ai;jk. An element of such a product 

is indexed by a pair of ν-tuples, a row index                 

j = (j1,j2,...,jν) and a column index k = (k1,k2,...,kν), 

where 1 ≤ ji ≤ mi and 1 ≤ ki ≤ ni. The element ajk of the 

product matrix is 

 

Lemma 3.5 ([6]). Let A and B be square matrices of 

orders m and n, respectively, with eigenvalues λi            

(1 ≤ i ≤ m) and µj (1 ≤ i ≤ n). Then the mn eigenvalues 

of A B are λiµj, and those of A In +Im  B are λi 

+µj. 

 

 

The second part of the lemma is due to the fact that    

A   In and Im   B are simultaneously diagonalizable. 
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The first part has an obvious extension to multiple 

products. That is the first part of the next lemma. The 

second part is the extension to multiple sums and 

products. 

Lemma 3.6.([6]) Let Ai, for each i = 1,...,ν, be a square 

matrix of order ni and let λij for 1 ≤ j ≤ ni be its 

eigenvalues. Let k1,...,kν be non-negative integers. 

Then the n1 ···nν eigenvalues of the Kronecker product  

  
        

  are              
        

    for            

1 ≤ ji ≤ ni. 

Let kp = (kp1,...,kpν) for 1 ≤ p ≤ q be vectors of non-

negative integers. Then the n1 ···nν eigenvalues of  

∑     
             

    
     are    

        ∑  
   

      
   

    
     for 1 ≤ ji ≤ ni. 

 

Proof. The first part is obvious from Lemma 3.5. The 

second part is true because the summed matrices 

commute, so they are simultaneously diagonalizable, 

they have the same eigenvectors and therefore their 

eigenvalues can be summed.   

 

3.2.  General Products Of Various Graphs  

Now we define a general product of signed graphs 

following the idea of Cvetkovi´c´ for unsigned graphs 

([5]) as described in [6, Section 2.5]. We work with 

signed graphs Σi = (Vi, Ei ,σi), for i = 1,...,ν, of order ni, 

with underlying graph Gi = (Vi, Ei), vertex set             

Vi = {vi1,vi2,...,vini} and adjacency matrix Ai. We 

denote the eigenvalues of Σi by λi1, λi2, ..., λini. The 

Laplacian eigenvalues are denoted by a superscript L, 

as    
 . 

The general product is known as the non-complete 

extended p-sum or NEPS, but we shall call it simply 

the Cvetkovi´c´ product. This product is defined in 

terms of a set B of 0/1 vectors, called the basis for the 

product, such that for every i   {1,2,...,ν} there exists 

at least one β   B for which βi = 1 ; we say B has 

support {1, 2, ..., ν}. First we define a product for one 

arbitrary vector β = (β1, β2, ..., βν)  {0,1}
ν   Z

ν
. This 

product, written NEPS(Σ1, ..., Σν; β), is the signed 

graph (V, E, σ) with vertex set 

V = V1 x V2 x …….. x Vv 

edge set 

E = { (u1, …., uv) (v1, …., vv) : ui = vi  if  βi = 0 and 

            uivi   Ei if βi = 1}, 

and signature 

σ((u1, …., uv)( v1, …., vv)) = Пv
i=1σi(ui, vi) 

βi 
= Пi,βi 

=1σi(ui, vi) 

In the general defnition we have a set  

B = {β1, …, βq}  {0; 1}
v
 \ {(0, 0, …, 0} 

and we define 

NEPS(∑1, …,∑v ; B) = ⋃        (∑1, …,∑v ; β). 

 

The underlying graph of NEPS(Σ1,...,Σν;B) is the 

Cvetkovi´c
´ 

product NEPS(G1,G2,...,Gν;B) of the 

underlying graphs as defined in [6, Section 2.5]. 

In particular, the Cartesian product Σ1 × Σ2 ×···× Σν 

arises by taking B to be the set of all vectors with 

exactly one coordinate equal to 1. Another important 

product, called the strong product or categorical 

product, is obtained by taking B = {(1,1,...,1)}. A 

generalization of both, which could be called the 

symmetric p-sum (but we think of it as a product), is 

obtained by taking the set Bp, for 1 ≤ p ≤ q, which 

consists of all vectors β with exactly p coordinates 

equal to 1. An incomplete p-product, where B Bp, has 

the nice property that 

    ((           )
  (  )     ((          ) 

For instance in the Cartesian product                      

(−Σ1) ×···× (−Σν) =  −(Σ1 ×···× Σν). 

A final property shows that a Cvetkovi´c´ product of 

all-positive signed graphs is essentially equivalent to 

the same product of the underlying graphs. Clearly, 

    (           )        (         )  (5) 

 

We now provide expressions for the adjacency, degree 

and Laplacian matrices of the Cvetkovi´c´ product of 

signed graphs in terms of the Kronecker products of 

the corresponding matrices of the constituent graphs. 

An important application is the characterization of 

balance of the product graph. 

First we give the way of dealing with the adjacency 

matrix of the Cvetkovi´c´ product, which implies 

expressions for the eigenvalues. For the eigenvalues of 

Σi we write λij, 1 ≤ j ≤ ni. This theorem generalizes [6, 

Theorems 2.21 and 2.23] to signed graphs. 

 

Theorem 3.7. ([9]) Let Σ = NEPS(Σ1,...,Σν;B). The 

adjacency matrix is given by                                     

 ( )   ∑   
        

  
   . 

The eigen values are        ∑     
        

  
            

for 1 ≤ j1 ≤ n1, ..., 1 ≤ jv ≤ nv 

Corollary 3.8.([9]) The adjacency matrix A(Σ) of the 

Cartesian product Σ = Σ1 ×···× Σν of ν signed graphs is 

A1   In2  ···  Inν + In1   A2  ···  Inν + ··· + In1   

In2  ···  Aν. 

The eigenvalues of Σ are the sums of the eigenvalues 

of the Σi ; i.e., 

λj1j2...jν(Σ) = λj1(Σ1) + ··· + λjν(Σν). 

Proof. The corollary is immediate from Theorem 3.7 

except the criterion for strict inequality, which is 

slightly stronger than that of Theorem 3.7 and is 

proved similarly. 

 

3.3.  Balance Of The Cvetkovi´C´ Product And 

The Cartesian Product 

The eigenvalues provide a short proof that the 

Cartesian product is balanced if and only if all 

constituents are balanced. Balance is important 

because, by Acharya’s theorem, it causes the 

eigenvalues and energy (of both adjacency and 

Laplacian matrices) to be identical to those of the 

underlying unsigned graph, and therefore not 

interesting for themselves. We begin with a general 

theorem that provides a sufficient but not a necessary 

condition for balance of a Cvetkovi´c´ product. 
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Theorem 3.9.([9]) A Cvetkovi´c
´ 

product                      

Σ = NEPS(Σ1,...,Σν;B) is balanced if Σ1, ..., Σν are all 

balanced. 

Conversely, suppose B contains the vector                    

βi = (0,...,0,1,0,...,0) with 1 in the ith position and 0 

elsewhere. If Σi is unbalanced, Σ is also unbalanced. 

The first part of Theorem 3.9 does not have a general 

converse. A counterexample is Σ = 

NEPS(−G1,+K2;B2), where B2 = {(1,1)}. Σ is bipartite 

and all negative; therefore it is always balanced. 

However, −G1 is balanced only when G1 is bipartite. It 

is an open problem to determine which bases B have 

the property that for every Cvetkovi´c
´ 

product Σ = 

NEPS(Σ1,...,Σν;B) with basis B, Σ is balanced if and 

only if all the factors Σi are balanced. There is one 

important case in which there is such an if-and-only-if 

theorem. 

Theorem 3.10. ([9])The following three statements 

about the Cartesian product Σ = Σ1 ×···× Σν are 

equivalent. 

(1) Σ is balanced. 

(2) All of Σ1, ..., Σν are balanced. 

(3) Σ and its underlying graph G have the same 

spectrum. 

 

Corollary 3.11.  Let  Σ  =  Σ1 ×···× Σν.  Then  

 b(Σ) = b(Σ1)···b(Σν). 

 

3.4.  Laplacian Matrix, Eigenvalues And Energy 

Of The Cartesian Product 

The formula for the Laplacian matrix of the Cartesian 

product is like that for the adjacency matrix. We write 

λ
L

i and µ
L

j for the Laplacian eigenvalues of Σ1 and Σ2, 

respectively. 

Theorem 3.12.([9]) The degree matrix of a 

Cvetkovi´c´ product G = NEPS(G1,...,Gν;B) of graphs 

Gi of order ni, 1 ≤ i ≤ ν, is 

D(G) = 
X
D(G1)

β1  ···  D(Gν)
βν

. 

The average degree of the product is                   

 ̅( )   ∑ ∏  ̅(  )
   

      . 

In particular, the degree matrix of the Cartesian 

product is 

D(G1 x …. x Gv) = D(G1)   In2…..    Inv + In1 

 D(G2) ….. Inv + …. + In1   In2 ……  

D(Gv). 

The average degree is  ̅( )   ∑  ̅(  )
 
     . 

Theorem 3.13.([9]) Given signed graphs Σ1 of order n1, 

..., Σν of order nν, the Laplacian matrix of the Cartesian 

product Σ = Σ1 ×···× Σν is 

L(Σ) = L(Σ1)   In2  ···  Inν + ··· + In1   In2  ···  

L(Σν). 

 

The Laplacian eigenvalues of the Cartesian product 

are the sums of those of all the factors Σi ; i.e., 

   
 ( )   ∑    

  
   . 

Theorem 3.13 does not generalize to other Cvetkovi´c´ 

products. For a vector β of weight ∑     
 
   , the 

Laplacian of Σβ = NEPS(Σ1,...,Σν;β) is 

 (  )    (  )    (  )
        (  )

  

   (  )
        (  )

   

will not combine by linear combination into a product 

of Laplacian matrices. The general product 

NEPS(Σ1,...,Σν;B) where B contains a vector of weight 

> 1 has the same difficulty. The only Cvetkovi´c´ 

product in which no vector has weight > 1 is the 

Cartesian product. 

 

4. SCOPE FOR FURTHER EXTENSION TO 

SKEW-GAIN GRAPHS 

Many of the concepts and results described in the 

previous sections can be naturally extended to the 

realm of skew-gain graphs which are defined below. 

Before that we need the definition of anti-involution. 

We call a function f : Γ → Γ to be an involution if 

f(f(x)) = x for all x   Γ. The collection of all anti-

involutions is denoted by Inv(Γ). 

Definition 4.1. Let   (   ⃗⃗ ) be a graph with some 

prescribed orientation and Γ be an arbitrary group. If f 

  Inv(Γ) then the skew-gain graph Φf = (G, Γ, φ, f) is 

such that the skew gain function  φ :  ⃗⃗ → Γ satisfies   φ 

(  ⃗⃗⃗⃗ ) = f(φ (  ⃗⃗⃗⃗ )). 
Note that skew-gain graphs encompass all the 

structures like graphs, signed graphs and gain graphs 

by choosing proper anti-involutions for each case. 

 (A.1) 
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